Metode Eliminasi Gauss, Gauss-Jordan, Sarrus dan Cramer

METODE ELIMINASI GAUSS


Eliminasi gauss pertama kali sudah dikenal sejak tahun 179 M oleh matematikawan asal Tionghoa, namun lebih disempurnakan lagi oleh matematikawan kelahiran Jerman Carl Friedrich Gauss ( 1777 - 1855). Eliminasi gauss yaitu suatu cara untuk mengoperasikan nilai - nilai didalam sebuah matriks, sehingga menjadi matriks yang lebih sederhana. Caranya dengan menggunakan operasi elementer sampai hasilnya menjadi matriks yang eselon baris. Eliminasi ini juga dapat digunakan untuk menyelesaikan soal persamaan linear dengan memasukkan persamaan linear dengan menggunakan matriks. Caranya yaitu dengan mengubah persamaan linear tersebut menjadi sebuah matriks yang teraugmentasi dan mengoperasikannya sehingga menjadi matriks yang eselon baris. Kemudian setelah menjadi matriks eselon baris, kita dapat mencari nilai variabel - variabel tersebut dengan cara mensubtitusikannya.

Ciri - ciri metode gauss :

Dalam metode ini terdapat tiga jenis operasi yang dapat digunakan yaitu :
  1. Mengganti urutan dua baris
  2. Mengalikan baris dengan angka yang bukan nol
  3. Menambah suatu baris dengan baris yang lainnya 
Contoh Soal :
Diketahui SPL 3 variabel
2x + 3y - z = 6
x + 2y - 4z = 8
x + y + 4z = 4
Tentukan nilai dari variabel - variabel SPL diatas !
Penyelesaian : 

Tahap Pertama
Mengubah persamaan linear tersebut menjadi sebuah matriks yang teraugmentasi
Tahap Kedua
Mengubah baris pertama kolom pertama ( a11 ) menjadi angka 1


Hasil dari a11, a12, a13 dan a14 ini akan menjadi baris pertama ( b1 ) dan untuk bilangan lainnya tetap sama.

Tahap Ketiga
Mengubah baris ke-2 pada kolom pertama ( a21 ) menjadi angka nol dan mengubah baris ke-2 pada kolom ke-2 ( a22 ) menjadi angka 1

Hasil dari a21, a22, a23 dan a24 ini akan menjadi baris ke-2 ( b2 ), nilai untuk bilangan lainnya tetap sama.

Tahap Keempat
Mengubah baris ke-3 pada kolom pertama ( a31 ) dan baris ke-3 pada kolom ke-2 ( a32 ) menjadi angka nol dan baris ke-3 pada kolom ke-3 ( a33 ) menjadi angka 1
Hasil dari a31, a32, a33 dan a34 ini akan menjadi baris terakhir atau baris ke-3 ( b3 ).

Tahap Terakhir
Setelah melengkapi ciri - ciri dari eliminasi gauss dan mendapatkan matriks yang eselon baris, kita dapat melanjutkannya dengan mencari nilai variabel x, y dan z dengan mensubstitusikannya. Caranya yaitu :
Dari matriks diatas maka didapatkan SPL 3 variabel yang baru yaitu :

x + y + 3z = -2
y - 7z = 10
z = 6

Kemudian kita harus mensubstitusikan persamaan linear diatas untuk memperoleh nilai variabel x, y dan z. karena nilai z sudah diketahui yaitu :

z = 6

Maka, langkah selanjutnya adalah mencari nilai dari variabel y dengan mensubtitusikannya dengan persamaan linear dengan persamaan pada baris ke-2.

y - 7z = 10
y - 7(6) = 10
y - 42 = 10
y = 10 + 42
y = 52

Dan terakhir kita akan mencari nilai dari variabel x dengan mensubstitusikannya dengan persamaan linear pada baris pertama.

x + y + 3z = -2
x + 52 + 3(6) = -2
x + 52 + 18 = -2
x + 70 = -2
x = -2 - 70 
x =-72

dengan ini maka, kita sudah mendapatkan nilai - nilai dari variabel diatas yaitu x = -72, y = 52 dan z = 6 .

ELIMINASI GAUSS-JORDAN



Eliminasi gauss-jordan ini adalah pengembangan dari eliminasi gauss yang hasilnya lebih disederhanakan lagi. Metode ini dimodifikasi oleh Wilhelm Jordan seorang insinyur Jerman pada tahun 1887. Dengan metode ini selain dapat digunakan untuk menyelesaikan sistem persamaan linear juga dapat digunakan untuk mencari invers dari sebuah matriks.
 
Sehingga untuk mengoperasikan persamaan linear cara penyelesaiannya pun hampir sama dengan metode gauss, namun pada metode gauss kita hanya menghasilkan matriks yang eselon baris sedangkan metode eliminasi gauss-jordan ini perbedaanya hanya kita harus membuat elemen elemen diatas maupun dibawah diagonal utama menjadi bernilai nol. Sehingga hasilnya menjadi matriks eselon yang tereduksi yaitu menjadi sebuah matriks dengan diagonal satuan atau matriks identitas ( semua elemen pada diagonal utama bernilai 1, sedangkan elemen lainnya bernilai nol ). Tahap pengerjaanya sama dengan metode sebelumnya yaitu eliminasi gauss  menggunakan cara elementer.
Contoh soal :
Diketahui SPL 3 variabel

x + 3y + 2z = 4
2x + 7y + 4z = 6
2x + 9y + 7z = 4

Tentukan nilai dari variabel - variabel persamaan linear diatas !
Penyelesaian :

Tahap Pertama 
Sama seperti metode gauss, pertama kita harus mengubah persamaan linear 3 variabel diatas menjadi sebuah matriks yang teraugmentasi.
Tahap Kedua
Karena baris pertama pada kolom pertama ( a11 ) sudah bernilai 1. Maka, kita akan mengubah baris ke-2 ( b2 ) terlebih dahulu.
Hasil dari a21, a22, a23 dan a24 akan menjadi baris ke-2 ( b2 ) dan untuk elemen lainnya tetap sama.

Tahap Ketiga 
Selanjutnya kita akan mengubah nilai pada baris ke-3 ( b3 ).
 Hasil dari a31, a32, a33 dan a34 akan menjadi baris ke-3 ( b3 ).

Tahap Keempat
Karena baris pertama pada kolom ke-2 ( a12 ) dan baris pertama pada kolom ke-3 ( a13 ) belum bernilai nol, maka kita masih harus mengoperasikannya agar bernilai nol sehingga menjadi matriks yang tereduksi.
Hasil dari a11,a12,a13 dan a14 ini akan menjadi baris ke-1 ( b1 ).

 Hasil dari a11, a12, a13 dan a14 ini akan menjadi tahap terakhir untuk mengoperasikan baris pertama ( b1 ), sehingga kita sudah mendapatkan matriks yang tereduksi.

Tahap Terakhir

Setelah kita menghasilkan matriks eselon tereduksi yang membentuk sebuah matriks identitas seperti diatas, maka kita tidak perlu mensubstitusikannya seperi pada eliminasi gauss karena, sudah dapat diketahui nilai variabelnya yaitu : x = 26, y = -2 dan z = -8 .


METODE SARRUS

Metode ini ditemukan oleh matematikawan Prancis yang bernama Pierre Frederic Sarrus. Metode sarrus adalah salah satu cara yang digunakan untuk mencari determinan dari suatu matriks yang dapat digunakan pada matriks berordo 3 x 3. caranya adalah sebagai berikut :
  
Jadi, untuk menghitung determinan dari suatu matris kita perlu menjumlahkan semua diagonal pertama dan semua diagonal kedua juga dijumlahkan. Kemudian hasil dari diagonal pertama dikurangi dengan hasil dari diagonal kedua. Untuk lebih jelasnya langsung saja kita ke contoh soal :

Diketahui sebuah matriks
Jadi, dengan ini kita sudah mendapatkan nilai determinan pada matriks Z adalah -13. Metode sarrus ini adalah cara paling mudah yang dapat kita gunakan untuk mencari determinan dari matriks yang berordo 3 x 3.

METODE CRAMER 

Metode cramer ini ditemukan oleh matematikawan Swiss yang bernama Gabriel Cramer. Metode cramer adalah salah satu cara yang digunakan untuk menyelesaikan persamaan linear yang terdiri dari beberapa persamaan dan variabel yang tidak diketahui.

Jika persamaan linear yang terdiri dari n persamaan dan n variabel yang tidak diketahui dinyatakan dengan Ax = b dan det(A) ≠ 0, maka persamaan tersebut mempunya penyelesaian :

Dimana Aj adalah matriks yang diperoleh dari mengganti kolom ke-j pada matriks A dengan elemen pada matriks b.

Contoh soal :
Sebagai contoh saya akan menggunakan Variabel x, y dan z
Diketahui :
-2x + 3y -z = -4
4x - y + 4z = 8
2x + 4y + 16
Tentukan nilai variabel dari SPL 3 variabel diatas dengan menggunakan metode cramer !
Penyelesaian :

Tahap Pertama
mengubah persamaan linear diatas kedalam sebuah matriks

Tahap Kedua
Mencari determinan dari matriks A

 
Tahap Ketiga
Mencari nilai dari variabel x



Tahap Keempat
Mencari nilai dari variabel y



Tahap Kelima
Mencari nilai variabel z

Maka dengan ini sudah dapat kita ketahui bawa nilai dari variabel x = 8,8, y = 8 dan z = -2,4 .

Demikianlah pembahasan singkat saya tentang metode eliminasi gauss, gauss-jordan, sarrus dan cramer. Semoga artikel ini dapat membantu kalian dalam mengerjakan tugas.

Terimakasih ...







Referensi

Komentar

  1. Nilai z: -8, tidak ada hasil jika disubstitusikan persamaan ke 3

    BalasHapus
  2. Carilah nilai x, y dan z dengan menggunakan metode Eliminasi Gauss Jordan
    4x+y-z=-3
    x-2y+3z=-1
    2x+3y+z=9


    DIBANTU DONG MIN

    BalasHapus
  3. Selesaikanlah persamaan dibawah dengan metode gauss-Jordan.
    2x+ y+ 2z = 9
    X + 2y− 3z = 1
    5x + y − 3z= 0
    Kak tolong ini kamu lagi uts ngak paham waktu nya cuman 2 jam kak plis๐Ÿ™

    BalasHapus
  4. Gauss Jordan elimination

    X1 + 2x2 + 3x3 =
    2x1 + 3x2 + 2x3=3
    3x1 + X2 + 2x3 =5

    Kak tolong ini kamu lagi uts ngak paham waktu nya cuman 2 jam kak plis๐Ÿ™

    BalasHapus
  5. kak,apakah hasil dari gaus ,gaus jordan,dan cremer hasilnya sama?
    tolong dong kak

    BalasHapus
  6. 1. Misalkan di punyai 3 persamaan dengan 3 variabel yang tidak diketahui yakni
    Persamaan ke 1 : 4F + 7G + 9H = 126
    Persamaan ke 2 : 6F + 3G + 7H = 108
    Persamaan ke 3 : 2F + 9G + 5H = 132

    menggunakan gaus jordan

    BalasHapus
  7. Kak tolong kerjain ini kak ini tugas kami kak bsol di kumpul tolong yah kak������

    Selesaikan SPLTV berikit demgam metode sarrus
    X-2y+3z=2
    2x-3y-4z=-5
    3x+4y+5z=12

    BalasHapus
  8. Kak tolong kerjain ini kak ini tugas kami kak bsol di kumpul tolong yah kak๐Ÿ™๐Ÿ™๐Ÿ™

    Selesaikan SPLTV berikit demgam metode sarrus
    X-2y+3z=2
    2x-3y-4z=-5
    3x+4y+5z=12

    BalasHapus
  9. Carilah invers untuk matriks berikut menggunakan OBE (Operasi Baris Elementer)
    4 −2 1
    ๐ด=−7 4 −2 5 −3 2

    BalasHapus
  10. Tolong bantu kak penyelesaian spl dengan metode gaus jordan,gaus siedel dan cramer
    4xy+3z=17
    X+5+z=14
    2x-y+8z=12

    BalasHapus

Posting Komentar